

ИНСТИТУТ КОМПЬЮТЕРНЫХ НАУК И ТЕХНОЛОГИЙ

ВШ ИСКУСТВЕННОГО ИНТЕЛЛЕКТА

курс: Введение в профессиональную деятельность

ЛЕКЦИЯ 3 HOMO SAPIENS VS

«ХОМО ИНФОРМАТИКУС»

22.02.2024

СОДЕРЖАНИЕ

О чем говорили и что обсуждали на прошлой лекции

- Введение к лекции «3» : хомо sapiens vs homo информатикус
- Физическая реальность с точки зрения компьютерных наук
- Теория прямого и «обратного» кодирования
- Расслоение реальности по Больцману: «реальное» vs «информационное».
- Энтропия в физике и информационных системах
- it from bit аксиомы модели/системы
- Заключение

О ЧЕМ ГОВОРИЛ: ЗНАЧЕНИИ СЛОВ И ОПРЕДЕЛЕНИЙ

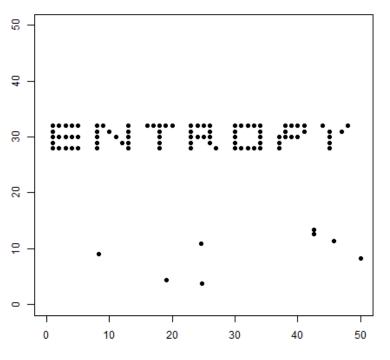
• «Если **значения слов (объем понятия)** не определены, то нет и смыслов. Если нет смыслов, то действия (реификация) не происходят».

(Конфуций, 551-479 г. до

н.э.).

• «Определите содержание слов, и вы избавите человечество от половины его заблуждений».

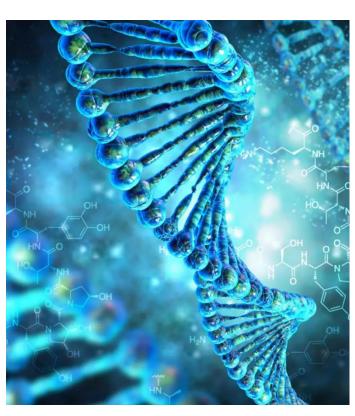
(Рене Декарт, 1956 -1650).


• «Информация – это не материя и не энергия. Это третье». (Норберт Винер в

книге

«Кибернетика, или Управление и связь в животном и машине», 1958 г.)

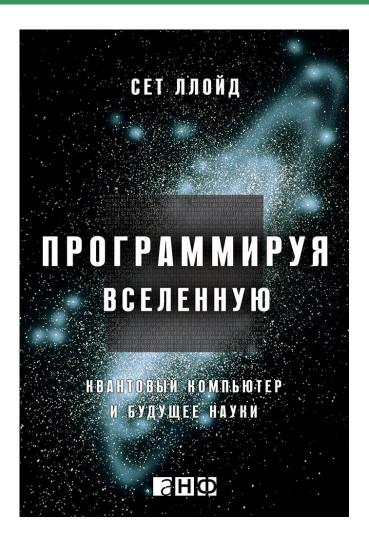
Что Обсуждали на прошлой лекции



- **Энтропию** как информационное «зеркало» физической реальности.
- Реификацию (reification) как процесс, в котором абстрактная идея (например, программа) превращается в другой реальный или мыслимый объект
- Компьютер массой в 1кг, который обладает энергией E=mc² = 8.9874х10¹⁶ Дж, может производить 5.4258х10⁵⁰ операций за секунду

Уточнили, что понятие «энтропия» можно интерпретировать как произведение меры уверенности в том, что некоторое событие произойдет (вероятность события) на меру неопределенности того, что произойдет именно это событие

ПРИМЕР: «ИНФОРМАЦИОННОЕ ЗЕРКАЛО» РЕАЛЬНОСТИ


Пусть имеется три сообщения:

- Эти сообщения занимают одинаковый объём памяти 50 бит, но количество информации в них различается. Почему ?

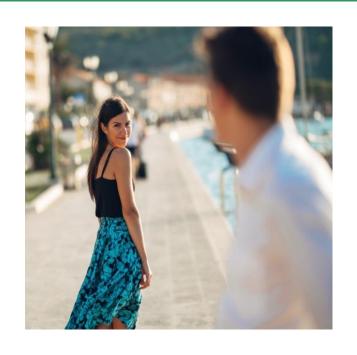
Ин-форм-ация «IN-FORMA-TION» мера воспринимаемого различия в объекте/сообщении/процессе

БЫЛО БЫЛО РЕКОМЕНДОВАНО ПРОЧИТАТЬ

Обсуждаемая в книге идея:

Вселенная постоянно обрабатывает информацию – будучи квантовым компьютером огромного размера, Вселенная все время вычисляет собственное будущее.

Если каждый атом Вселенной способен хранить информацию, томожно ли так запрограммировать часть пространства Вселенной, чтобы

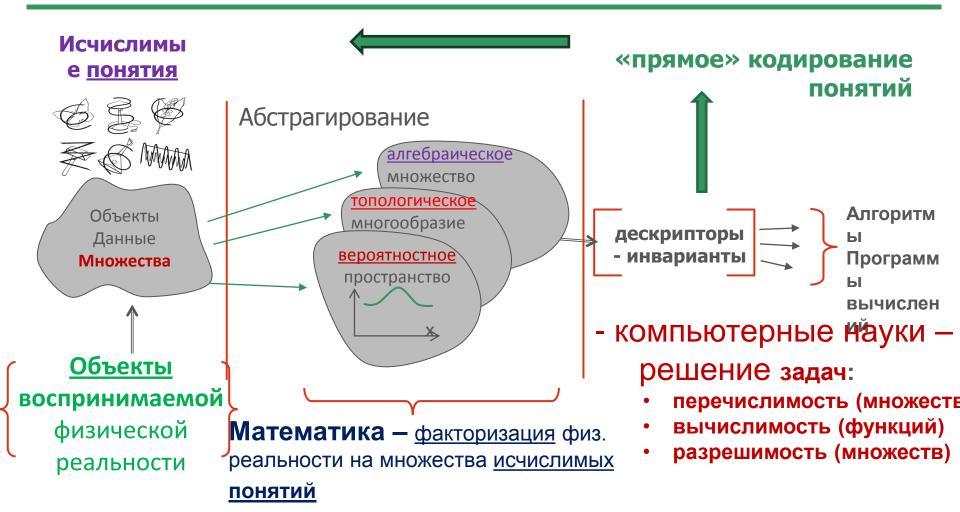

.....это был компьютер, способный думать «за политех других»?

Можно, но для этого надо, чтобы компьютер «отделял» себя от среды и мы знали как ответить на вопросы:

может ли компьютер знать то, что о нем 'думают другие'

Может ли компьютер знать то, что на нем хотят «рассчитать» ?

Знает ли компьютер, что он сам может?



Я оглянулся посмотреть, не оглянулась ли она, чтоб посмотреть, не оглянулся ли я

Проблема рефлексии: «расщепления» реальности себя и не-себя/материи-информации/

Введение. Физическая реальность с точки зрения современных компьютерных наук (КН)

КН начинается с того, что воспринимаемые объекты реальности – рассматриваются как многообразия <u>исчислимых понятий</u>, для которых введены отношения порядка и «расстояния»

ФУНДАМЕНТАЛЬНАЯ ПРОБЛЕМА «ТОЧНОСТИ» КОДИРОВАНИЯ РЕАЛЬНОСТИ: ЧИСЛО VS СЛОВО

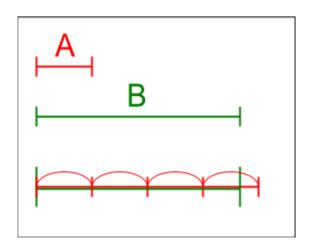

В одном мгновенье видеть **вечность**, Огромный мир - в зерне песка, В **единой** горсти - **бесконечность** И небо в чашечке цветка.

Уильям Блейк (1757-1827) цифровые коды:

$$=$$
, 1, 0, $+/-\infty$

слова

«похоже», единица, ноль, бесконечность $e^{-i\omega t}$, $\sqrt{a^2+b^2}$, $\frac{dy}{dx}$



To see a world in a grain of sand And a heaven in a wild flower, Hold infinity in the palm of your hand And eternity in an hour.

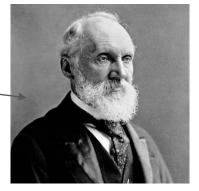
Аксиома Архимеда — основа описания физической Реальности

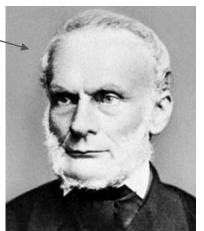
утверждение: если даны отрезки A (масштаб) и B (объект измерения), то можно так отложить отрезок A несколько раз, что сумма будет равна или «немного» превосходить отрезок B,

Итого, если многообразие из объектов физической реальности «архимедово», то оно:

одно-масштабно, гладко, «<u>делимо» и «однородно</u>». поэтому оно «исчислимо» и его можно описать, используя методы «абстрактной» математики.

ГРАНИЦЫ ВОСПРИНИМАЕМОГО «МИРА»: ФИЗИЧЕСКАЯ РЕАЛЬНОСТЬ, МАТЕМАТИКА, КОМПЬЮТЕРНЫЕ НАУКИ





Исторический экскурс в развитие научных понятий

- Слово «энергия» введено <u>Аристотелем</u> в трактате «<u>Физика</u>», однако там оно обозначало деятельность человека.
- Термин «энергия» впервые появился в начале XIX в. в работах Т. Юнга.
- В 1853 г. впервые было применено словосочетание «потенциальная энергия» в смысле запасенная энергия. В 1870 г. У. Томсон (Кельвин), ввел термин «кинетическая энергия»
- В 1865 Р. Клаузиусом было введено понятие **«связанная»** энергия W_{связ} та часть внутренней энергии тела (системы из молекул), которую нельзя использовать для совершения механической работы.
- В 1882 году физиолог Г, Гельмгольц **ввел** понятие "свободная энергия" — то есть "свободная" для совершенеия работы.

Энтропия (др. греч. «превращение» - Эн é ргия (др. греч.) «действие»

- в 1877 г. Людвиг Больцман ввел понятие **термодинамической энтропии S** размерностью [Дж*К⁻¹]. Каждое физическое тело, оказывает тепловое <u>«воздействие»</u> на другие тела
- энтропия S входит в выражение для связанной энергии тела $W_{CBЯ3} = T \cdot S$, а полная энергия системы имеет вид $U = G + W_{CBЯ3} = G + T \cdot S$,

где U – полная энергия системы, G - «свободная энергия», которую можно использовать для совершения работы.

Итак: «энтропии» Больцмана характеризует «превращение» свободной энергии в работу.

С РОСТОМ ЭНТРОПИИ УМЕНЬШАЕТСЯ ВОЗМОЖНОСТЬ «СОВЕРШАТЬ» РАБОТУ

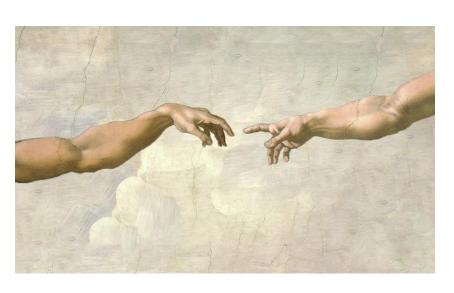
Из формулы $U = G + W_{CB93} = G + T \cdot S$, следует $\Delta G = \Delta U - T \cdot \Delta S$

Итак, если энтропия возрастает ($\Delta S > 0$), то свободная энергия системы уменьшается ($\Delta G < 0$).

• В изолированной системе общее изменение свободной энергии всегда отрицательно, то есть свободная энергия изолированной системы всегда уменьшается, а возможность совершения работы сокращается.

ТЕОРИЯ «ОБРАТНОГО КОДИРОВАНИЯ» : СВОБОДНАЯ «ЭНЕРГИЯ» - ИНФОРМАЦИЯ (ПОНЯТИЯ КАНАЛА ПЕРЕДАЧИ ДАННЫХ И ИНФОРМАЦИОННОГО ВОЗДЕЙСТВИЯ)

теория «прямого» кодирования → если энтропия передаваемых данных за единицу времени меньше пропускной способности канала передачи (восприятия), то информацию об объекте можно передать без ошибок



Суть теории «обратного кодирования»: если энтропия объектов физической реальности на «1 времени» больше пропускной способности канала восприятия, то скорость «расшифровки» смысла «текста», с помощью которого «физическая реальность» обменивается информацией с субъектом, ограничена пропускной способностью канала «восприятие - вычисление действия»

XOMO ИНФОРМАТИКУС / HOMO INFORMATICUS

Homo sapiens - активные «трансформеры» - преобразующие воспринимаемые данные о физической реальности в абстрактные понятия, а саму окружающую реальность в среду обитания... система «человек – мир – отношения»,

«homo informaticus»

активные «трансформеры» информации в физической среде, которая дополнена виртуальной реальностью система «человек – компьютер – интерактивность»

Искусство состоит в умении отсекать лишнее.

Микела́нджело Буонарро́ти (1475 — 1564)

КАК УЗНАТЬ, ЧТО ЕСТЬ «ЛИШНЕЕ»

в июне 2017 года, вышла статья «Attention is All You Need» инженеров Google.

В ней авторы представили и подробно разобрали архитектуру трансформера.

Transformer был разработан для одной узкой и конкретной задачи — машинный перевод текстов

Пока только люди способны не только думать о том, что видят, но ещё и думать о том, как они думают о том, что видят. проф. СПбГУ Татьяна Черниговская

РАССЛОЕНИЕ РЕАЛЬНОСТИ ПО БОЛЬЦМАНУ: «РЕАЛЬНОЕ» VS «ИНФОРМАЦИОННОЕ»

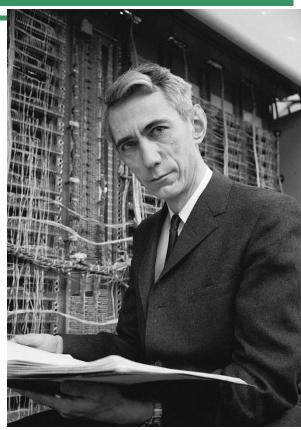
Термодинамика Больцмана: Дано — вещество, состоящее из молекул. Одному и тому же макро состоянию вещества кодирует N различных конфигураций молекул.

Мера макро-состояния вещества - количество связанной энергии (это та часть энергии молекул, которую нельзя превратить в работу)

Идея: вместо «тела состоящего из вещества» рассмотреть «сообщение», состоящее из символов, кодирующих это состояние.

Описание состояния вещества это процесс убывание энтропии и увеличения «информация» $I=log_2$ N

Формализм Хартли (1928 г.):


логарифмическая мера информации, которая определяет количество информации, содержащееся в сообщении, где N — количество символов (букв) в используемом алфавите (мощность алфавита), К — длина сообщения (количество символов в сообщении), І — количество информации в сообщении в битах. Количество возможных вариантов разных сообщений M=N^K

Пример: Мощность алфавита ДНК N равна 4. Каждое основание (буква в сообщении ДНК) несет i=log₂4=2 бита информации

Еще раз об энтропии сообщения, которое передается в канале связи

- В 1948 г. Клод Шеннон (Claud E. Shannon) ввел меру информационного содержания сообщения. Он предложил сообщение считать реальным «объектом» состоящим из различных символов»
- По аналогии с термодинамикой, Шеннон ввел понятие **информационной энтропии**, которую определил не через
 - макросостояние тела температуру (у отдельной молекулы температуры нет) , а через другое
 - макросостояние сообщения- а именно вероятность того, что конкретный символ из известного алфавита входит в передаваемое сообщение.

К. Шеннон - первый «хомо информатикус»

Задача передачи информации К. Шеннона:

Постановка задачи:

Дано - сообщение, состоящее из символов, которое надо передать через канал связи.

- Смысл сообщение не имеет значения. В канале на сообщение воздействуют помехи. Вероятность появления i-ого символа из алфавита A в передаваемом сообщении (появление символа в с ообщении рассматривается как событие) равна р_i
- Макро-состояние источника сообщений характеризуется некоторой неопределенностью эту неопределенность называют информационной энтропией: среднее количество информации, приходящееся на одно сообщение:

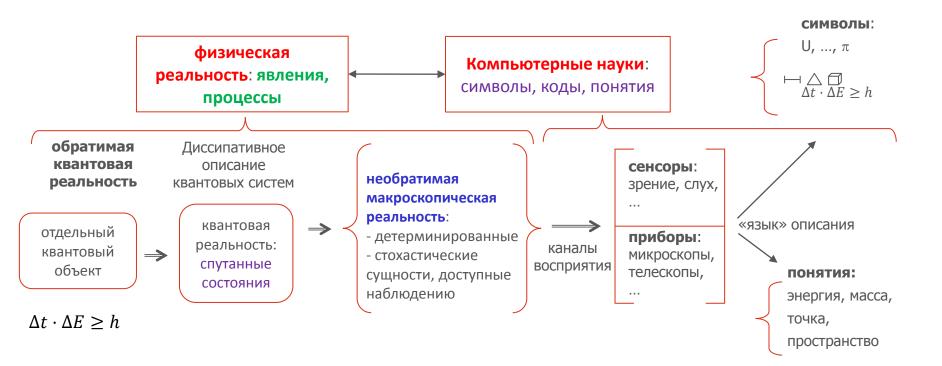
$$H(x) = -\sum_{i=1}^{n} p(i) \log_2 p(i).$$
 $\sum_{i=1}^{n} p_i = 1$

• Энтропии источника данных характеризует среднее число битов на элемент данных, требуемых для её кодирования без потери информации

Энтропия в физике и информационных системах

- В концептуальном отношении термодинамическая энтропия и энтропия Шеннона эквивалентны: число распределений молекул, выражаемое энтропией Больцмана, отражает количество Шенноновской информации, необходимое для реализации конкретного распределения молекул. Но есть различия:
- Во-первых, энтропия, которой пользуются физики, выражается отношением энергии к температуре [Дж*К-1], а энтропия Шеннона, используемая специалистами по связи, числом битов, т.е. величиной принципиально безразмерной.
- Во-вторых, приведенные к одним и тем же единицам измерения численные значения этих величин будут различны.
 - Например, информационная энтропия микросхемы, хранящей один гигабайт данных, составляет около 10^{10} бит (1 байт = 8 бит), а термодинамическая энтропия той же микросхемы при комнатной температуре имеет порядок 10^{23} бит.

IT FROM BIT: ЯВЛЕНИЯ — СОБЫТИЯ — СООБЩЕНИЯ - ПОНЯТИЯ


• Логика процесса:

- явления, которое сопровождается актом восприятия или наблюдения есть событие
- события формируют сообщения, которые можно передать по «каналу» связи
- сообщение состоит из символов алфавита, с помощью которого кодируется информация о событии
- принятое по каналу связи сообщение разделяет воспринимаемую реальность на дискретное множество понятий, которые получены путем обобщения воспринимаемых данных делают эти понятия весьма вероятными: I=-log₂ р
- Итого: it from bit (понятиям, используемым для описания физической реальности сопоставляется информационная мера)

Аксиомы модели/системы

- аксиома физической модели:
 - Окружающая человека физическая реальность есть целостная система, состоящая из исчислимых элементов-понятий, кодирующих в вероятностью «1» свойства воспринимаемой реальности
- аксиома системы:
 - Система это модель, которая обладает эмерджентными свойствами, которых ее отдельные элементы не имеют.

ФУНДАМЕНТАЛЬНЫЕ ЗАДАЧИ КОМПЬЮТЕРНЫХ НАУК (КН)

Задача 1. Вычисление решения задачи за конечное время с использованием алгоритма (требования: быстрее, точнее, с меньшими затратами, операции: +/-,>, =)

Задача 2. Построение алгоритма (программы), содержащего конечное число операций, решения прикладной задачи. Требование к алгоритму: понимание задачи, объяснение результата решения, обобщение результатов, анализ физической реализуемости?)

«Классическая» проблема КН:

решение прямых задач путем вычисления «единственного» решения уравнений, используя алгоритмы (программы), управляющие состоянием «конечного автомата»

«Актуальная » проблема КН:

решение обратных задач, которые не имеют единственного решения и...выбор одного (из счетного или даже несчетного множества) из возможных путем регуляризации — учета дополнительных ограничений, которые формально в задаче не сформулированы

Модели реальности физического и информационного планов

Модели

- физического плана локальные и замкнутые. Такие модели описывают реальность, в которой: «стрела» времени физически не обратима (прошлое и будущее не «симметричны»), действует принцип «относительности» (СТО, ОТО) и принцип «неопределенности» (например, произведение длительности сигнала на ширину спектра равно/больше 2*рі. или (f2 f1) < С/(Тt)
- информационного плана глобальные и открытые. В таких моделях «стрела времени» информационно обратима, поэтому «прошлое» и «будущее» информационно достижимо, но действует принцип относительности по отношению к знаниям субъекта.

ЗАКЛЮЧЕНИЕ: ЭНТРОПИЯ VS ИНФОРМАЦИЯ

Информация по Шеннону - мера уменьшения неопределенности, непосредственно связанная с воздействием, которое уменьшает количество равновероятных состояний наблюдаемой системы. Таким образом, поступление информации в систему — это уменьшение ее энтропии:

$$\Delta I = -\Delta S$$

Соответственно, для системы с фиксированным количеством состояний (частей) и их степеней свободы

$$I + |S| = const$$

Величина константы определяется внутренней структурой рассматриваемой системы.

Что рекомендуется прочесть

- 1. Бриллюэн Л. Научная неопределенность и информация. М.: Мир, 1966. 271 с.
- 2. Кадомцев Б. Б. Динамика и информация. М.: Успехи физических наук, 1999. 394 с.
- 3. Холево А. С. Квантовые случайные процессы и открытые системы. М.: Мир, 1988. 223 с.