

ИНСТИТУТ КОМПЬЮТЕРНЫХ НАУК И ТЕХНОЛОГИЙ

ВШ ИСКУСТВЕННОГО ИНТЕЛЛЕКТА

курс: Введение в профессиональную деятельность

ЛЕКЦИЯ 7: КОМПЬЮТЕРНЫЕ НАУКИ В ПОИСКЕ ТЕХНОЛОГИЙ ВЫЧИСЛЕНИЯ СМЫСЛА

. . . .

23.03.2023

Что обсуждали на прошлой лекции:

- 1. Феномен сознания имеет накопительный эффект и интегрирован с тем, что человек осязал, воспринимал или теоретически изучал ранее (до момента реализации феномена).
- 2. Возможность осознания "опыта " радикально отличается от алгоритмов вычислений функций, реализованных в современных компьютерных системах, так как является контекстно зависимым и субъективным.

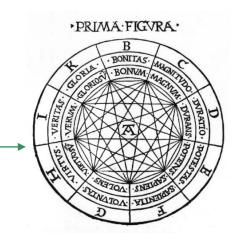
3. Имеем:

- компьютерные алгоритмы это решение прямых задач заранее составленной цепочкой операций,
- интеллектуальные «алгоритмы» это решение «обратных задач», когда в алгоритм вычислений включает «объяснение» резульата —некий **экзо фактор**.

Выводы из предыдущей лекции

Современные цифровые вычисления - это процесс, который реализует отображение между <u>символическими структурами</u>, описывающими программы реализации «семантики» алгоритмов, и <u>полем рациональных чисел</u> конечной разрядности. Такое отображение может принимать различные формы, например

- функция,
- оператора,
- алгоритмы но и функции
- понимание
- объяснение....


Итак, фундаментальная проблема компьютерных наук - построить отображение-трансформер, которые «вычисляет» семантику (смысл) различных символьных последовательностей (предложений), преобразуя их в некторое структурированное множество «машинных команд», реализуемых на платформе цифрового автомата.

Наука о «вычислении» смысла

- Осмысление природы интеллекта и попытки построения «механических» машин, работающих над тем, как «вычислить» смысл происходящих процессов, начались с работ монаха Р. Луллия XIII века (1233 1315).
- Для него набор истин, которые описывают реальность, представлялось конечным множеством, а все осмысленные представления о мире полагались выводимыми из некоторого упорядоченного (размеченного) множества по определенным правилам (логическая машина Луллия Ars Magna).

Неполнота науки: теоремы Курта Гёделя

Это две теоремы (1931 г.) математической логики о

- принципиальных ограничениях формальной арифметики и как следствие,
- всякой формальной системы, в которой можно определить основные арифметические понятия:

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима формула, содержательно утверждающая непротиворечивость этой арифметики

если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Можно ли построить «машину Геделя» ?

С точки зрения компьютерных наук: любой набор аксиом (машинных команд), который может, реализовать компьютер неизбежно будет неполным.

Итак, если между натуральными (рациональными) числами и некоторым объектами физической теории, определен изоморфизм, TO утверждения такой теории не могут быть доказаны или опровергнуты рамках самой теории

Следствие из теорем Гёделя

«Если система аксиом полна (то есть любое истинное утверждение в ней может быть доказано), то она противоречива (то есть в ней можно одновременно доказать утверждение А и утверждение не-А)»

любое истинное утверждение доказуемо

нельзя доказать A и не-A
это плохо или хорошо?

наши действия нельзя описать с помощью идеальной системы аксиом

мы отличаемся от любого компьютера

Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно выводам Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность, исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми погическими схемами.

> Человеческий мозг способен понять всю глубину истины, заключенной в утверждениях Гёделя, а компьютерный - нет.

«ДАТАФИКАЦИЯ» РЕАЛЬНОСТИ И ПРОБЛЕМА «ТОЖДЕСТВА»

- Физическая реальность суть совокупность объектов и процессов, о которых человек судит на основе доступных для наблюдения или измерения данных (лишение человек данных-одна из форм наказания)
- К объектам физической реальности применим фундаментальный принцип "тождества неразличимых"

Готфрид Лейбниц

- Суть этого принципа в том, что любые два физически неразличимых объекта (субстанции) неизбежно совпадут, став тождественным объектом (субстанцией).
- Возможность различать одни объекты природы от других неизбежно требует, что объекты являются носителями некоторой меры разнообразия, т.е. difference that make a difference* другими словами, информации

Этапы история формализации знаний «музыка есть бессознательное упражнение души в арифметике». Г. Лейбниц

- Возможность существования и формирования «алфавита человеческих мыслей» допускал Г. Лейбниц (1646 – 1716) – создатель системы двоичной системы, дифференциального и интегрального исчисления, закон сохранения энергии.
- Создал знаменитый механический калькулятор, который кроме сложения и вычитания мог, умножать, делить, а также извлекать из произведения корни и возводить числа в степень
- А также обосновал идею необходимости создания языка, из пространства слов некоторого можно сформировать смысловой базис науки и различных комбинаторных преобразований из слов, которые сохраняют смысл предложения.

Обосновал идею целостности органических систем, принцип несводимости органического к механическому, доказал, что любой организм не является биологической запрограммированной машиной

Г.ЛЕЙБНИЦ: МЫСЛИТ НЕ МОЗГ, А ЧЕЛОВЕК С ПОМОЩЬЮ МОЗГА.

• Коллективный разум человечества мозгом не является, а представляет собой целостную дедуктивную систему. Причем эта система развивается независимо от воли отдельных входящих в нее людей (инвариантна к личностному фактору).

Что из этого следует:

- Проблему искусственного интеллекта нельзя решить вне понимания механизма познавательной сущности естественного интеллекта и его функционирования в пространстве информационных коммуникаций.
- При этом «обессмысливание (лишение семантической характеризации) цифровой информации связано с фрагментарностью ее потребителей:
 - математиков, физиков, химиков, биологов, социологов, психологов, экономистов и т.п.
- так как ни у одной из этих групп нет одинаковых взглядов и смыслового представления сущностного знания. (см. теоремы Геделя)

Объяснительные проблемы современных научных знаний

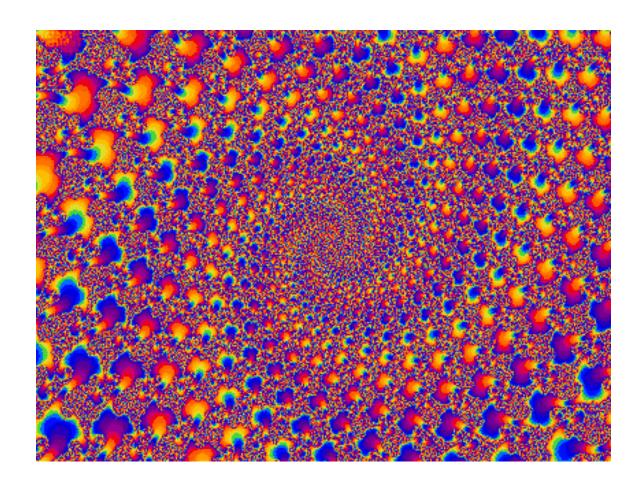
Пример. В нерелятивистской механике не существует «целостного» понятия массы, а понятий «массы» имеется два: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения.

- Первая масса инертная (или инерционная) есть отношение негравитационной силы, действующей на тело, к его ускорению.
- Вторая масса гравитационная определяет силу притяжения тела другими телами и его собственную силу притяжения.

Экспериментально установленная их пропорциональность, что позволяет говорить о проявлении единой массы тела как в негравитационных, так и в гравитационных взаимодействиях. Почему это так?

Объяснение. Ускорение тела, а следовательно, и его траектория не зависит от массы и **внутреннего строения тела**. Если различные тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Подходы к классификации методов объяснения


		Поиск	Обработка ЕЯ	Предста в- ление знаний	Машинное обучение	Распозна- вание образов	Дата- майнинг	НЕ- факторы	Принятие решений	Робото-техника	Роевой интеллект
	Интуитивный подход		Тест Тьюринга	Tt						Расширенный Xt Тест Тьюринга	
Нисходящая парадигма	Логический подход	Поиск IS информации	Модель Мт Маркова	Продукционная	Дедуктивное	Рт с образцом	Rg анализ	Теория DS Демпстера- Шефера	Универсальный GS решатель задач	Rb основе правил	Автоматы
	Символьный подход	Поиск в SS пространстве состояний	Формальные Fg	Семантические Sn сети	кь Кь	Семантическая Sf свёртка	Деревья Dt решений	Нечёткая ГІ	Экспертные Es системы	_{Фреймы} Fr	Языки Взаимо- действия
Гибридная парадигма	Агентный подход	Случайное Rw блуждание			Обучение с RI подекреплением				Кибернети- Ст ческая машина	Ro	Рациональные Ra
Восходящая парадитма	Структурный подход		Стат. методы Sm обработки ЕЯ		Искусственные Аі	1 *	Стат. методы Sd дата-майнинга				
	Эволюционный подход	Генетиче ские Ga алгоритмы			Нейро- Ne эволюция		Ер программи- рование				Искусственная АІ жизнь
	Квазибиологиче- ский подход	ДНК- DC компьютер					posarine			Ве электроника	Nb

		Перцептроны	Сеть	Машина	Глубокая	Карта	Авто-	Ней ронная	Свёрточные	Генеративно-	Глубинное	
*	Искусственные нейронные сети	Pc	Wn	Bm	Db	Km	Ae	Nt	Fn	Gn	DI	
	неиронные сети		Ворда	W Self-Million	сеть доверия	Кохонена	коди ровщики	машина		состязательные сети	обучение	

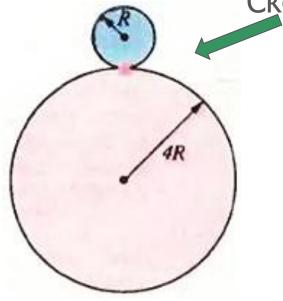
ФРАКТАЛ — ПРИМЕР ЦЕЛОСТНОГО МНОЖЕСТВА

Целостность через scale-free -> масштабное самоподобие

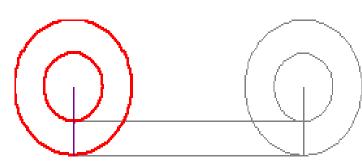
ПРИМЕР: ПРОТИВОРЕЧИЯ ФОРМАЛИЗАЦИИ И ВОЗМОЖНОСТИ «ФАЛЬСИФИКАЦИИ»

- Принцип постоянства скорости света противоречит классической механике, а конкретно закону сложения скоростей. Поэтому время должно быть относительным неодинаковым в разных Инерциальных Системах Отсчета.
- В науке существует дихотомия волны и частицы (принцип дополнительности). Частица элемент материи существует в конкретной точке пространства. Тогда как волна существует везде, кроме точки, из которой была испущена.
- Существует ли «промежуточная» форма представления элементов материи, кроме частиц и волны?

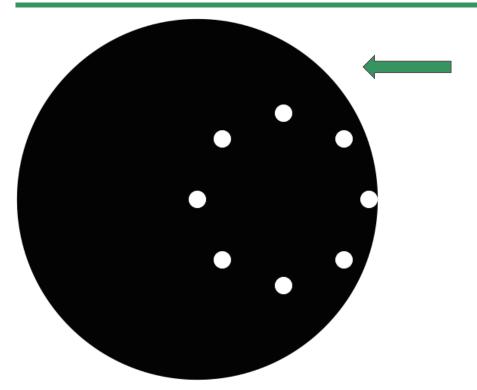
На эти вопросы пытался ответить Карл Поппер в книгах «Логика научного исследования» (1935), «Предположения и опровержения: рост научного знания» (1963) и «Объективное знание: эволюционный подход» (1972).


Физический vs ментальный **гештальт** (целостный объект)

- Актуальная бесконечность
- Аксиома выбора
- Парадокс Банаха-Тарского

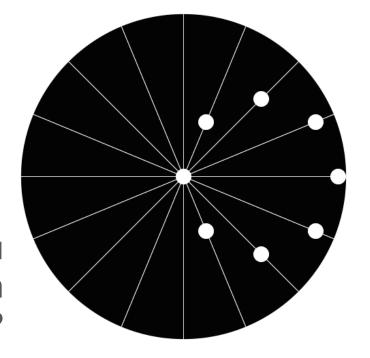

Патология восприятия – движение по «кривой дороге»

Аристотелево колесо: круг, обращаясь вокруг своего центра, катится в то же время по прямой линии и с совершением полного оборота описывает прямую, коей длина равна окружности круга. Малый вписанный круг опишет прямую линию, но равную уже не своей окружности, а окружности главного (внешнего) круга. Длина окружности с меньшим радиусом не может быть равна длине окружности с большим радиусом. Так в чём же



дело?

Парадокс возник изза непонимания разницы между словами «путь» и «перемещение»



ВСЕ ЛИ МЕХАНИЧЕСКИЕ ЗАДАЧИ ИМЕЮТ КОЛИЧЕСТВЕННОЕ <u>РЕШЕНИЕ</u>?

Изображен круг, который катится без проскальзывания по внутренней поверхности другого круг

Вопрос: по какой траектории движется каждая точка на окружности катящегося круга?

Точки сингулярности: Числа и множества

- Химеры на окружности
- Разрывные линейные функции
- Конструктивные числа

Мера и категория

- Меры Жордана, Бореля и Лебега
- Канторово множество ненулевой меры
- Множества Витали и Бернештейна
- Измеримые функции

Понятия, которые позволяют объяснить реальность Метрические пространства

- Метрика и топология
- О бесконечной размерности
- Полная непрерывность

ВСЕ ЛИ СОБЫТИЯ МОЖНО ПРЕДСКАЗАТЬ: ТЕОРИЯ ВЕРОЯТНОСТЕЙ

- Как теория создает заблуждения
- Проблемы в основаниях теории вероятности
- Сходимость случайных величин. Равны ли между собой случайные величины

Алгоритмическая неразрешимость

- Алгоритмы и вычислимость
- Перечислимость и разрешимость
- Теорема Геделя
- Неформализуемость истины и неаксиоматизируемость арифметики

ФУНДАМЕНТАЛЬНЫЙ ВОПРОС: ВСЕ ЛИ МОЖНО ИЗМЕРИТЬ И ВЫЧИСЛИТЬ

«Истина всегда рождается как ересь, а умирает как предрассудок» (Гегель).

Вопросы от физика:

1) Можно ли то, **чего нет** физически, представить с помощью цифровой «модели» ?!

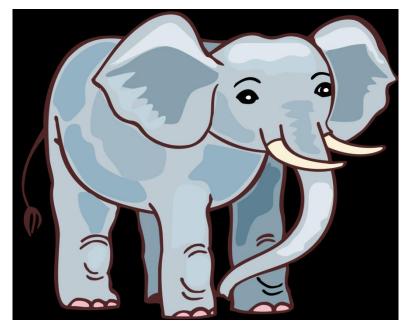
Да , например, число « π »

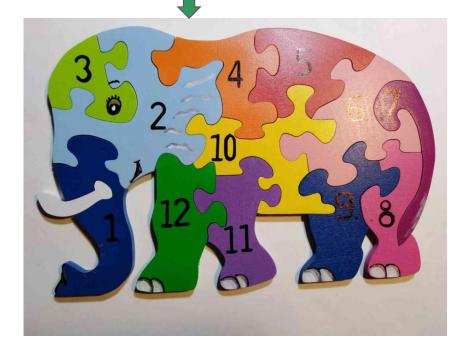
2) Если процессы обладают нулевой энергий то можно ли их измерить?!

(«нуль» – это, либо нечто, либо разность двух одинаковых количеств)

Да, виртуальные частицы с нулевой энергией возможны, но их наблюдать нельзя. Такие частицы могут оказывать действие на внесённые в «физический вакуум» реальные объекты. Но это воздействие нефизическое, а информационное, значит ли это, что у виртуальных частиц «есть память»?.

Сознание – суть использование информации, хранящейся в памят для материализации знаний


Цифровая модель целостного восприятия объекта (мыслимых признаков)



Симметрия «простых» элементов у пазла «плоскости»

Сложная структура элементов (мыслимые индивидуальные признаки) пазла модели «реального» объекта

ПРОБЛЕМА ТОЖДЕСТВА ЦИФРОВЫХ ДАННЫХ

Вопрос: Почему бесконечная сумма геометрической прогрессии дает конечный ответ, если a<1. Потому, что любая точка в единичном круге поля вещественных чисел содержит информацию о поле в целом:

$$1+a+a^2+a^3+...=rac{1}{1-a}.$$
 Трименяя вычисления бесконечно много раз можно получить конечные

Применяя вычисления

результаты. Вопрос: Как называется число, к которому если прибавить единицу, то получиться ноль? Итак: a+1=0, число a=-1, но..., если число разрядов числа конечно, то:

....999999999 \rightarrow значит это число =-1? или все таки -1 и есть «бесконечность» ?!

... 0000000000

Вывод: если в любой точке «объекта» есть информация о объекте в полом то это информационный фрактал

Выводы.

ТОЖДЕСТВА ЦИФРОВЫХ КОДОВНЕ ИМЕЮТ СМЫСЛА...

-1= e

 \lim_{\longrightarrow}

 $X \rightarrow 0$

Основные «коды» цифровых объектов — **0**, **1**, **∞**